博碩士論文查詢聯邦系統首頁 聯絡信箱 關於我們 加入我們

本論文已被瀏覽 41 次, [ 造訪詳細資料與全文 ] 83 次,[ 回到前頁查詢結果 ] [ 重新搜尋 ]

Multilayer impedance pump: a bio-inspired valveless pump with medical applications.

作者:Laurence Loumes,
畢業學校:California Institute of Technology
出版單位:California Institute of Technology
核准日期:2006-12-08
類型:Electronic Thesis or Dissertation
權限:mixed.I hereby certify that, if appropriate, I have obtained a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or proj....

英文摘要

This thesis introduces the concept of multilayer impedance pump, a novel pumping mechanism inspired from the embryonic heart structure.
The multilayer impedance pump is a composite two-layer fluid-filled elastic tube featuring a thick, gelatin-like internal layer similar in nature to the embryonic cardiac jelly, and that is used to amplify longitudinal elastic waves. Pumping is based on the impedance pumping mechanism. Elastic waves are generated upon small external periodic compressions of the elastic tube. They propagate along the tubeâs walls, reflect at the tubeâs extremities and drive the flow in a preferential direction. This fully coupled fluid-structure interaction problem is solved for the flow and the structure using the finite element method over a relevant range of frequencies of excitation. Results show that the two-layer configuration can be an efficient wave propagation combination, and that it allows the pump to produce significant flow for small excitations. The multilayer impedance pump is a complex system in which flow and structure exhibit a resonant behavior. At resonance, a constructive elastic wave interaction coupled with a most efficient energy transmission between the elastic walls and the fluid is responsible for the maximum exit flow. The pump efficiency reaches its highest at resonance, highlighting furthermore the concept of resonance pumping.
Using the proposed multilayer impedance pump model, we are able to bring an additional proof on the impedance nature of the embryonic heart by comparing a peristaltic and an impedance multilayer pump both excited in similar fashion to the one observed in the embryonic heart.
The gelatin layer that models the embryonic cardiac jelly occupies most of the tube walls and is essential to the propagation of elastic waves. A comparison between the exact same impedance pump with and without the additional gelatin layer sheds light on the dynamic role of the cardiac jelly in the embryonic heart and on nature's optimized design.
Finally, several biomedical applications of multilayer impedance pumping are presented. A physiologically correct model of aorta is proposed to test the pump as an implantable cardiovascular assist device.


chair - Morteza Gharib

committee_member - Dale Ian Pullin

committee_member - Timothy E. Colonius

committee_member - John Oluseun Dabiri

committee_member - Chiara Daraio


 

計畫贊助者: