博碩士論文查詢聯邦系統首頁 聯絡信箱 關於我們 加入我們

本論文已被瀏覽 59 次, [ 造訪詳細資料與全文 ] 9 次,[ 回到前頁查詢結果 ] [ 重新搜尋 ]

製備以羧甲基纖維素為基材之材料及其應用

Preparation of Carboxymethyl Cellulose Based Materials for Potential Applications

作者:王良宜
畢業學校:國立臺灣科技大學
出版單位:國立臺灣科技大學
核准日期:2016-01-15
類型:Electronic Thesis or Dissertation
權限:Copyright information available at source archive--National Taiwan University of Science and Technology....

中文摘要

羧甲基纖維素 (carboxymeethyl cellulose, CMC) 為纖維素的衍生物,為一具有生物相容性的材料。本論文利用羧甲基纖維素做為基材,製備三種不同的型式的羧甲基纖維素材料並應用於不同的領域。本論文包含三個部分,分別為: 製備不溶於水的羧甲基纖維素薄膜及金屬複合物 (composite) 應用於抗菌研究、製備聚乙烯醇 (poly(vinyl alcohol), PVA)/羧甲基纖維素水膠,應用於去除重金屬,以及利用大氣電漿電子束 (atmospheric pressure plasma jet, APPJ) 製備羧甲基纖維素/聚 (N-異丙基丙烯醯胺) (poly(N-isopropylacrylamide), pNIPAAm)共聚物 (copolymers)。
於第一部分的研究中,利用酸化的方式可改變原溶於水的羧甲基纖維素薄膜成為不溶於水的薄膜。實驗結果顯示,羧甲基纖維素薄膜具有吸附及還原金屬的能力。因此,本研究利用羧甲基纖維素薄膜吸附銀,製備銀/羧甲基纖維素的複合膜用於對大腸桿菌 (Escherichia coli, E. coli)的抗菌研究。實驗結果顯示,當羧甲基纖維素膜上含有高於1.76 µg/mm2的銀粒子,則具有良好的抗菌效果。
在第二部分的實驗中,利用冷凍-解凍 (freeze-thawed) 法製備聚乙烯醇/羧甲基纖維素水膠用應用於金屬的吸附。實驗結果指出,本方法所製備出的水膠含有高於 71% 不溶於水的成分。此外,研究中討論聚乙烯醇和羧甲基纖維素的比例對吸附重金屬的影響。由感應耦合電漿 (inductively coupled plasma, ICP) 的定量結果可知,P2C1水膠 (含 2/3 的聚乙烯醇及 1/3 羧甲基纖維素) 對銀有最好的吸附能力 (吸附量為 8.4 mg 銀/g 水膠)。另一方面,本研究也應用P2C1水膠吸附不同的種類的金屬離子,包括:銀、鎳、銅及鋅等。除了可應用於吸附外,實驗結果指出聚乙烯醇/羧甲基纖維素水膠具有還原金屬的能力。
第三部分的實驗為利用大氣電漿電子束合處理含水性的單體,製備具溫度敏感性的羧甲基纖維素/聚 (N-異丙基丙烯醯胺) 共聚物。本研究除了提出可能的合成機制外,也最適化電漿的參數,包括使用的功率及電子束的掃描次數。由傅里葉轉換紅外線光譜儀 (Fourier transform infared spectroscopy, FTIR) 及熱重分析儀( thermogravimetric analysis , TGA) 的分析結果,發現於60瓦、80瓦及100瓦的功率下,最適化的電子束掃描次數分別為 15 次、10 次,及 5 次。於80瓦的功率下,10次掃描可以得到約 26% 的羧甲基纖維素/聚 (N-異丙基丙烯醯胺) 共聚物。此外,本研究所合成的羧甲基纖維素/聚 (N-異丙基丙烯醯胺)共聚物具有溫度敏感性,其最低臨界溶解溫度 (lower critical solution temperature, LCST) 為 33 oC。另外,培養小鼠纖維母細胞 (L-929) 於合成的羧甲基纖維素/聚 (N-異丙基丙烯醯胺) 共聚物上,實驗結果發現此共聚物具有良好的生物相容性。
本論文以羧甲基纖維素為基材,製備出三種不同的型式的材料,分別應用於抗菌、重金屬的吸附及細胞培養。值得一提的是,本研究所使用的方法具有簡便,對環境友善的優點,且在製程中不需使用交聯劑或是起始劑等化學藥劑,因此降低可能產生的生物毒性,可用於於生物工程相關的研究。此外,實驗所製備的羧甲基纖維素薄膜及聚乙烯醇/羧甲基纖維素水膠可用於吸附重金屬,因此可用於廢水處理及備羧甲基纖維素奈米複合物。另一方面,本研究所提出利用大氣電漿電子束合成羧甲基纖維素/聚(N-異丙基丙烯醯胺)共聚物的技術,可應用於合成不同種類的共聚物於水溶液中,因此具有許多應用的可能性。

英文摘要

Carboxymeethyl cellulose (CMC) is the most abundant derivative of cellulose which was regarded as a biocompatible material. This thesis reported different potential applications of CMC based materials in the forms of films, hydrogels, and copolymers. This thesis is composed of three parts: the preparation of insoluble metal/CMC films (CMCH) composites for antibacterial applications, the preparation of poly(vinyl alcohol) PVA/CMC composite hydrogels for the removal of heavy metal ions, and the syntheses of CMC/poly(N-isopropylacrylamide) (pNIPAAm) copolymers by atmospheric pressure plasm jet (APPJ).
In the first part, the insoluble CMCH films were prepared by acidification of CMC films. The CMCH films were found to possess ability for metal adsorption and metal reduction that allowed to prepare metal/CMC composites. In this thesis, the CMCH films were applied to incorporate Ag for preparing Ag/CMCH composite films which were further applied to evaluate the antibacterial abilities against the growth of E.coli. The results indicated that the CMC/Ag composites showed excellent antibacterial efficacy when the amount of silver exceeded the threshold of 1.76 µg/mm2.
In the second part, PVA/CMC hydrogels were prepared by freeze-thawed process for metal ions adsorption. At least 71% of insoluble PVA/CMC gels were obtained by the proposed method. The effects of the ratios between PVA and CMC on the adsorption capacity were investigated. Quantified results from inductively coupled plasma (ICP) revealed that the P2C1 hydrogels (containing two thirds of PVA and one third of CMC) presented the highest adsorption capacity toward Ag+ (8.4 mg per gram of hydrogel). The as prepared P2C1 hydrogels were applied to adsorb different metal ions, including Ag+, Ni2+, Cu2+, and Zn2+. The experimental results revealed that the prepared hydrogels possessed not only the adsorption ability but also the function of reducing metallic ions which was identified by ESCA analyses.
In the third part of the thesis, the thermo-responsive CMC/pNIPAAm copolymers were synthesized in aqueous solution by atmospheric pressure plasma jet (APPJ). The mechanism of the polymerization reactions between CMC and NIPAAm monomers by APPJ were proposed. In addition, the effects of applied power and scan number of plasma treatments were discussed. From Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) results, the optimized scan number for plasma treatments at 60 W, 80 W, and 100 W were scan 5, 10, and 15 times, correspondingly. For the samples treated at 80 W with 10 times of scan number, around 26.4% of CMC/pNIPAAm was obtained. Moreover, the synthesized CMC/pNIPAAm copolymers exhibited thermo-responsive properties with a lower critical solution temperature (LCST) of around 33 oC. Finally, the as-synthesized CMC/pNIPAAm copolymers were directly cultivated with L-929 fibroblasts which showed good biocompatibility.
Overall, this thesis demonstrated three types of applications for CMC based materials. Importantly, the preparation procedures tend to avoid the usages of solvents, reducing agents, or other chemical solvents such as crosslinkers or initiators which aimed to provide relative facile and environmental-friendly methods. The as-prepared CMCH films and PVA/CMC hydrogels were used to adsorb metal ions which showed the potential usages in waste water treatment and preparation of metal/CMC nanocomposites. On the other hand, the APPJ was proposed to synthesize CMC/pNIPAAm copolymers using dry process and demonstrated a novel possibility for the application of APPJ.

 

計畫贊助者: